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Abstract. A recent paper by Hojman shows how t o  use a symmetry to construct a 
constant of the motion far a system of second-order differential equations directly from 
the equations, without using either a Lagragian or Hamiltonian. It is, however, necessary 
t o  impose some constraint on the nature of these equations. Here this constraint is 
recognized as saying that the differential equation field is divergenceless with respect to 
some connection on the extended tangent hundlr. However. for the simplest example 
of a Lagrangian consisting of a kinetic energy and velocity-indepcdent potential all the 
conselved quantities mnstructed in this way from Noether symmetries are identically 
zero. The relation of this work to earlier work is pointed out. 

In a recent letter Hojman [l] presented a conservation law for a system of second- 
order differential equations. Under certain assumptions about the equations he 
obtained a constant of the motion from any symmetly, without using either a 
Lagrangian or a Hamiltonian. If the equations are written as 

5' - F * ( d , k J , ? )  = 0 i , ~  = 1,. . . , U  (1) 

then in the initial statement of his theorem Hojman requires the 'forces' F' to satisfy 

in some coordinates. Later in the paper a generalized statement of the theorem is 
given in which the forces are required to satisfy the relaxed condition 

where X is an arbitrary function of the .x i  and 

As Hojman points out, the constraints imposed on the force by (2) or (3) are 
coordinate-dependent. The class of coordinates in which the constraint is satisfied is 
singled out as privileged. I will give a geometrical statement of Hojman's comervation 
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law in which the assumption of this privileged class of coordinates is replaced by an 
assumption of the existence of a certain connection on the 'extended tangent bundle 
R x T M ,  where A4 is the configuration space. Such a geometrical, coordinate- 
independent statement is of course preferred if we wish to accommodate non-trivial 
configuration spaces. In addition it will be shown that this geometrical statement of 
the result is more general than that given by Hojman. 

In fact the conservation law presented by Hojman is not new. It had already been 
presented by Cantrijn and Sarlet [2]. (I am grateful to the referee for drawing my 
attention to this paper.) 1 shallconclude by elaborating upon the connection between 
Hojman's paper, as well as that presented here, and other earlier work. 

A system of n second-order autonomous differential equations may be described 
by a vector field on the tangent bundle T M  of an n-dimensional configuration 
manifold A4 (see for example [3]). For a system of non-autonomous equations 
we must generalize to a 'time-dependent vector field', that is a vector field on the 
'extended' tangent bundle R x T M .  The tangent field to any curve on M is a curve 
on T M ,  the natural lift of the curve. The graph of this curve in TA4 is a curve on 
R x T M .  A second-order non-autonomous differential equation field F is a vector 
field on R x T M  having the property that its integral curves are the graphs of the 
natural lifts of their projections to A t .  If coordinates 1.") a = 1.. . . , n for M 
induce natural coordinates { T" , y")  for T M  then F is given by 

where the components Fa are arbitrary functions on R x TA/ .  The projections of 
integral curves of F from R x Th f  to A4 satisfy the equations (1). A vector field MI 
on I x T M  generates a symmetry of the equations if it commutes with F .  In this 
case F is invariant under the flows of MI, and the flows map any integral curve of 
F to another integral curve, and hence map one solution of the system of equations 
to another. If X generates a symmetry then in local coordinates we must have 

, Y = o - + X S Y _ + ( F S " ) ~  a a a 
at 8. a y  

where 01 is a constant of the motion, that is Fa = 0. Given such a symmetry 
generator X we can construct another. MI, by M' = S - N F .  The symmetry 
generated by 14' preserves the fibres of R x Thf  above R. I n  local coordinates 

where the functions !V" satisfy 

which is Hojman's equation (4). 
Suppose that we had a system of coordinates in which the condition (2) was 

satisfied. Then we could put a trivial connection on I x T M  by declaring these 
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coordinate vectors to be parallel. Then ( 2 )  says that F is divergenceless with respect 
to  this connection. Hojman's conserved quantity I ,  given by 

is then the divergence of the symmetry generator W with respect to this trivial 
connection. This suggests that we should replace the coordinate-dependent condition 
(2) by the requirement that F be divergenceless with respect to some connection on 
I x TM. The geometrical statement of Hojman's result will follow directly from the 
following proposition. 

Proposition 1. If X and Y are vector fields on a manifold with connection then 

A-div)' - YdivX = div[X, Y ]  + (d ivT) (S ,  1') - ARic(X, Y) . (8) 

The divergence of a vector field 1' is defined by divY = ea ( V x s Y )  where the 
basis { e " }  is dual to the arbitrary basis {X,). The torsion tensor of V is T ,  whose 
divergence is defined by (d ivT)(X,Y)  = VXaT(X, l ;ea) .  The Ricci tensor is 
related to the curvature tensor R of V by Ric( S ,  1') = R( X-, , S, Y, ea), with the 
anti-symmetric part defined by ARic(X, 1') = Ric(S,  Y )  - Ric(1:X). Although a 
little tedious, the proof of the proposition is straightfoward. 

We could use the first Bianchi identity to  rewrite the tensor divT - ARic, hut in 
general this does not lead to anything simple. In the special case of zero torsion we 
have ARic(X, Y) = - R ( X ,  1'. Sa, e") .  This will of course be zero for a metric- 
compatible connection. 

Theorem. Let F be a second-order differential equation field that is divergenceless 
with respect to some connection on R x TM that satisfies divT = ARic. Then for 
any vector field W such that [W, F ]  = fw F ,  for some function f,, a constant of 
the motion is given by I ,  = divlY + ftv. 

If the torsion and Ricci tensors are related as assumed then Proposition 1 gives 

M'divF - FdivW = div[Mi, F ]  

So if [W,  4 = fw F we have 

&,,(!V, .") = div(f, F )  = frvdiV:.F + Ff,,, 

and 

WdivF-  f,divF- F(divM'+ f,,.) = 0.  

The assumption that divF = 0 then gives F(divl4' f f,,,) = 0, that is divW + f,,, 
is a constant of the motion. 

For the special case of a trivial connection and W generating a symmetry this 
reduces to the initial statement of Hojman's theorem. Note however that we do not 
quite require that W generate a symmetry. It is only necessary that the flows of M' 
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scale the differential equation field F by an arbitrary function. The set of vector 
fields generating these generalized symmetries is a Lie algebra with 

f[W,X] = M’f, - X f w  ‘ 

We can always add a multiple of F to W to obtain another generalized symmetry 
W + h F  with fW+hF = fw - Fh. In this way we can obtain a true symmetry if 
we can integrate to find a function h such that f w  = F h .  It is easy to see that 
I,,, ,  = I , ,  and so we do not change the constant of the motion in this way. 

Initially it might appear that the theorem stated here does not accommodate the 
generalized statement of Hojman’s theorem which can be phrased as follows. If the 
differential equation field satisfies divF = -F lnX,  where the divergence is with 
respect to a trivial connection and X is the lift of some arbitrary function on A4, 
then a constant of the motion is given by I = (l/X)div(XW) where W generates 
a symmetry. In fact this assumption about F implies that F is divergenceless with 
respect to some connection. We will see this from the following. 

Proposition 2.  If V is a connection on an m-dimensional manifold then for any 
smooth function f a connection $ is given by $,yIr = V,Y + X f Y  + YfX. 
The divergence of an arbitrary vector field I’ with respect to this new connection is 
related to that with respect to the old by &Y = divY + ( m  + 1)Yf. 

Since Xfl’ + Y f X  is linear (over the functions) in both X and I’ then is 
indeed a connection. We have 

& Y = e a  (exel’) = e ” ( V . u . I ’ + S . f I ’ + Y f S n )  = d i v 1 7 + I . f + n a I ’ f .  

The above proposition 2 lets us recognize Hojman’s weaker assumption as saying 
that F is divergenceless with respect to some connection, related to the trivial one 
by the function A. However, to be able to apply the theorem stated here we need to 
check that the torsion and Ricci tensors of this new connection satisfy the appropriate 
condition. The following proposition is more general than we actually need for,this 
purpose. 

Proposition 3. If a connection e is related to another connection V and a h smooth 
function f by e x Y  = VxI’ + SfI’  + Yf.Y then ? = T and &T - ARic = 
divT - ARic. 

Since XfI’ + I’fX is symmetric in S and 1’ the torsion tensors of the two 
= T the divergence with respect to V, divT. 

^I 

connections are the same. Although 
will not be the same as divT. In fact we have 

(&IT)( S, Y) = (divT)( S, Y) + mT( A‘, Y) f + X fT( 1.; Sa,  e”)  

- Y f T ( X , S , , e ” ) + T ( I ’ , S ) f .  

The Ricci tensor of e is related to that of V by 

S( X, IJ) = Ric( S, 1’) - ( m  - 1) H ,  ( Y, S) + ( 7 7 1  - 1 j Y ~ . X  f + Y f T (  X, . .y. ea 1 
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where H I  is the Hessian of f (its second covariant derivative). Taking the anti- 
symmetric part gives 

ARic(X, Y )  = ARic(X, Y )  + Y f T ( X , ,  A’, e “ )  - XfT( Xa, k’, e ’ )  

+ ( m  - l)T(X, Y ) f  . 

So the difference between the anti-symmetrized Ricci tensors is indeed the same as 
that between the divergences of the torsion tensor. 

We can now see how Hojman’s weakened statement is accommodated in the 
theorem stated here. Suppose that the differential equation satisfies divF = - F In X 
where X is an arbirrq function and the connection satisfies divT = ARic. Then if e is defined as in proposition 2, with the function f chosen by f = In X/(m + 1) 
with m the dimension of the extended tangent bundle, we have &F = 0. Moreover, 
proposition 3 ensures that &T = ARic. So from our theorem &W is a constant 
of the motion for W any (generalized) symmetry. Using proposition 2 we have 
&W = (l/X)div(XW), and we recover Hojman’s expression for the conserved 
quantity. (Note that there is no need to restrict X to be a lift of a function on M . )  

We have seen that Hojman’s constraint implies that the differential equation field 
is divergenceless; are these conditions just the same? For F as in ( 5 )  we have in 
general 

A 

a a + Pdiv -  + y‘div- a a F n  divF = div- + - at a y ”  aya a a a  

and so requiring F to be divergenceless is just Hojman’s condition on F if 
diva/& = a f / a z  for some function f for z any of the coordinate functions, 
for then divF = 8Fa/ay’’ + Ff. This will be the case if the connection is torsion- 
free and metric-compatible. In that case we have d i v a l a i  = a /az lnu  where 
U = I det g i j  (’/*. For a general connection the condition that F be divergenceless 
will not reduce to Hojman’s condition. In fact a connection on T M  with torsion 
naturally arises from any connection on M .  This connection, called the horizontal 
lift, is described in [3]. 

For a (non-degenerate) Lagrangian system all the constants of the motion are 
related to Cartan symmetries (see for example [3]) and so Hojman’s theorem cannot 
possibly lead to anything new. In fact, as we will show, it is not even very useful in 
that the constants of the motion associated with Noether symmetries are identically 
zero. We consider a Lagrangian of the form L = T - V o r where T is the kinetic 
energy and V o T is a potential energy function lifted to TA4 from a function V on 
M .  In local coordinates T = i g n b y a y h  where gab are the components of the metric 
tensor on A4 in some coordinates. Since we are considering an autonomous system 
of equations the Euler-Lagrange field will be a vector field on TA4, the projection 
of a ‘time-dependent’ differential equation field on R x T M .  The metric tensor on 
M lets us construct a metric and corresponding connection on T M .  We can use 
the (pseudo-) Riemannian connection on M to define horizontal lifts to T M .  Let 
{Ha} be the horizontal lifts of the basis vectors {aa j with (ii, j the verticai lifts. In 
coordinates 
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where rabC are the connection coefficients of V in the {?la} basis. Let the natural 
dual basis be {ea,@}, with e " ( H b )  = 6:. en(Vb) = 0 etc. Then anon-degenerate 
metric on T M  is given by 

G = @ e b  + gob+' @ $ b .  (10) 

This metric tensor, and the associated connection. is described by Yano and 
Ishihara [4], and is sometimes called the Sasaki metric [5].  Let V be the unique 
torsion-free G-compatible connection. Then one obtains the following: 

where Rabed are the components of the curvature tensor of V in the {aa} basis. 
Note that if A4 is just R" with the trivial connection then the Sasaki connection 
is trivial, with the horizontal and vertical lifts of Cartesian coordinate vectors being 
parallel. 

The Euler-Lagrange field F for the kinetic-plus-potential-energy Lagrangian is 
simply expressed in terms of vertical and horizontal lifts as 

av 
axb 

F = y"H, - gab-V, 

It is now straightfoward to check that F is divergenceless with the Sasaki connection. 
So for this important class of differential equations the conditions of the theorem are 
met. Suppose that li is a Killing vector on M that also leaves the potential V 
invariant. Then the complete lift 6 of IC to T M  generates a (Noether) symmetry. 
In coordinates 

However, if Djv is the divergence operator of the Sasaki connection then the 
connection formulae (11) show that the divergence of a complete lift is related to the 
divergence on M by 

DivR = Pdivli  (14) 

where div is the divergence operator on M .  If li is a Killing vector field on A4 then 
divi i  = 0 and so tie constant of fie motion obtained from the theorem is zero. 

In the introduction it was noted that Hojman's result was not in fact new. A paper 
by Cantrijn and Sarlet [2] contains the 'generalized statement' of Hojman's result. 
Moreover they only require their symmetry generator W to satisfy [W, F ]  = fw F, 
rather than commuting with the differential equation F ,  as required by Hojman. 
In fact they claim to be extending the work of Lutzky [SI, who gave the result for 
Lagrangian systems and noted that the constant was zero for Noether symmetries. 
A little later Crampin 171 gave a geometrical statement of the results presented by 
Cantrijn and Sarlet, noting that the condition imposed on the differential equation 
could be understood as saying that it was divergenceless. However, his definition of 
the divergence of a vector field was in terms of the Lie derivative of a globally defined 
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volume-form rather than, as here, in terms of some connection. He noted that for 
a Lagrangian system a volume-form may be constructed from the Cartan I-form, 
and that this volume-form is invariant under the flows of the Euler-Lagrange field. 
Therefore if the divergence is defined with this volume-form the Euler-Lagrange field 
will be divergenceless. He went on to show that the conserved quantities of Cantrun 
and Sarlet corresponding to Noether symmetries are zero. 

The cycle of papers [6 ,2 ,7 ]  has an interesting precursor. Gonzhlez-Gasu5n 181 
considered a system of first-order differential equations ii = Xi(zi)  and showed 
how to construct a constant of the motion from any symmetry (in the more general 
sense of scaling the differential equation field) providing the ‘divergence’ condition 
in which dX’/az’ = constant is satisfied. Apparently this result had already been 
given for the case of a Hamiltonian system 191. GonzAlez-Gascdn went on [lo] to give 
a geometrical statement of his result, giving a global statement of the ‘divergence’ 
condition by defining the divergence in terms of some orienting volume-form. This 
was further discussed in [ll]. Although Gonzdlez-Gasc6n was considering first-order 
systems, rather than second-order ones, his method is the same as used by Crampin. 

Both GonzBlez-Gasc6n and Crampin take the divergence of a vector field to be 
defined via some orienting volume-form. I have taken the divergence to he defined 
by a linear connection. The exact relation between these approaches is given by the 
following. 

Proposition 4. If the divergence is defined with a connection V then the following 
are equivalent: 

(i) Xdiv)’ - YdivX = div[X, 1’1 
(ii) divT = ARic 
(iii) On each contractible open set U ,  there is an wform w,, such that 

Lxw,  = divXw,, where E ,  denotes the Lie derivative. On the intersection U a n U o  
the n-form we is a constant multiple of w4,  

Proposition 1 mer t s  the equivalence of (i) and (ii). Suppose that (iii) is true. 
Then by Lie-differentiating this relation, using the identity !L,y>L!,! = L[,y,:,j, we 
arrive at (i). Conversely suppose that (i), and hence (ii), holds. For any point p we 
may pick some local n-form z defined in the neighbourhood (io of p .  To each vector 
field A’ we associate a function A ( X )  as follows: 

L ,yz-d ivXz= A ( S ) r .  (15) 

The properties of the covariant and Lie derivatives show that the function A ( S )  
depends linearly, over the functions, on X. Therefore the function A ( S )  is the 
contraction of a 1-form A on the vector field S. Taking the derivative of (15) with 
,Cy produces 

,CCY,CXz-Y”ivXt= Y ( A ( X ) ) z +  ( d i v X + A ( S ) ) ( d i v 1 ’ + A ( Y ) ) z .  

If we antisymmetrize in S and Y, noting that the commutator of the Lie derivatives 
is the derivative of the commutator, we get 

div[Y,X]- ( I ‘d ivS-XdivY)  = I’A(X) - . Y A ( Y ) - A ( [ l ’ , X ] ) = 2 d A ( I ’ , X ) .  
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So if (i) holds the 1-form A is closed. By the Poincare lemma it is therefore exact 
on any contractible neighbourhood. If on U ,  we have A = df, then 

C,z = divXz+ .Uf,z 

and so 

L,(exp(-f,)z) = divS(exp-f , ) r )  . 
Thus (i) implies (iii). 

Notice that even on an orientable manifold (i) does not imply that there is a 
global volume-form w such that Cxw = div.Yw. If the 1-form A in (U) is not exact 
then no such global ?-L-form can exist. As a simple example consider the punctured 
plane. Here the 1-form A given in local polar coordinates ( I-. 81 by A = d8 is closed 
but not exact. If V is the standard R2 connection then we may introduce another 
connection by 

PLY Y = VdY Y + A( Y)X 

The divergence operators are related by d h X  = divX t 2A( X ) .  If w is the standard 
volume-form then Cxw = divXw and so Lxw = (divX - 2A(X))w.  On any 
contractible region U ,  we may multiply w by the exponential of a local ‘angle’ 0, to 
form a local form we = exp(20,)w such that C.yw, = divXda.  As we go around 
the circle these local forms differ by a constant multiple on overlaps. Although this 
manifold is orientable there is no global volume-form 2 such that L c x z  = divX:, but 
we do have X d b Y  - J’d~vX = div!S. Y]. 

The unquestionable importance of constants of the motion for systems of 
differential equations means that any prescription for constructing such constants 
is worthy of careful scrutiny. In this paper we have given a coordinate-invariant 
statement of the theorem recently presented by Hojman. Such a statement is not 
only to be preferred to accommodate non-trivial configuration spaces but is also 
more general. For a torsion-free metric-compatible connection the divergenceless 
condition is exactly Hojman’s ’weaker’ constraint. Also we only need a ‘generalized’ 
symmetly that scales the differential equation field rather than leaving it invariant. 
It transpires that Hojman’s results are not in fact new, having already been given by 
Cantrijn and Sarlet. In turn their results could perhaps have been anticipated from 
the work on firs-order systems by Gonz6lez-Gast6n. Many of the points that we 
have made here in relation to  Hojman’s paper were made by Crampin in relation 
to that oi Cantrijn and Sariet. Uniike Crampin our deiinirion a i  the divergence 
operator is based on some connection rather than a global volume-form. This allows 
a slightly more general statement of the result. However, certainly for the case of 
Lagrangian systems the Cartan I-form does lead naturally to a divergence operator 
defined directly in terms of a volume-form. 

To use the result it is not only necessaly to find a symmetry generator but 
also to find some connection leaving the differential equation field divergenceless. 
Unfortunately in the simplest of cases this result is useless in that for Noether 
symmetries the ‘new’ constant is zero, That is not to say that there could not be 
other symmetries leading to non-zero constants (Hojman gives an example) but in 
general finding symmetry generators is akin to solving the original equations! Another 
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possibility might be that there are other less obvious connections with respect to which 
the differential equations are divergenceless and for which the Noether symmetries 
lead to non-zero constants. 

It remains to be seen if, say for non-Lagrangian systems, this result will actually 
be useful in finding new constants of the motion. 
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