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Abstract. A recent paper by Hojman shows how to use a symmelry to construct a
constant of the motion for a system of second-order differential equations directly from
the equations, without using either a Lagragian or Hamiltonian. It is, however, necessary
to impose some constraint on the nature of these equations. Here this constraint is
recognized as saying that the differential equation field is divergenceless with respect to
some connection on the extended tangent bundle. However, for the simplest example
of a Lagrangtan consisting of a kinetic energy and velocity-indepedent potential all the
conserved quantities constructed in this way from Noether symmetries are identically
zero. The relation of this work to earlier work is peinted out.

In a recent letter Hojman [1] presented a conservation law for a system of second-
order differential equations. Under certain assumptions about the equations he
obtained a constant of the motion from any symmetry, without vsing either a
I.agrangian or a Hamiltonian. If the equations are writien as

#FoFie@, =0 dj=1..»n ()

then in the initial statement of his theorem Hojman requires the ‘forces’ F' to satisfy

S =0 )

in some coordinates. Later in the paper a generalized statement of the theorem is
given in which the forces are required to satisfy the relaxed condition
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where X is an arbitrary function of the x* and
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As Hojman points out, the constraints imposed on the force by (2) or (3) are
coordinate-dependent. The class of coordinates in which the constraint is satisfied is

singled out as privileged. I will give a geometrical statement of Hojman’s conservation
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law in which the assumption of this privileged class of coordinates is replaced by an
assumption of the existence of a certain connection on the ‘extended’ tangent bundle
R x TM, where M is the configuration space. Such a geometrical, coordinate-
independent statement is of course preferred if we wish to accommodate non-trivial
configuration spaces. In addition it will be shown that this geometrical statement of
the result is more general than that given by Hojman,

In fact the conservation law presented by Hojman is not new. It had already been
presented by Cantrijn and Sarlet [2]. (I am grateful to the referee for drawing my
attention to this paper.) I shall-conclude by elaborating upon the connection between
Hojman’s paper, as well as that presented here, and other earlier work.

A system of n second-order autonomous differential equations may be described
by a vector field on the tangent bundle TAf of an n-dimensional configuration
manifold A (see for example [3]). For a system of non-autonomous equations
we must generalize to a ‘time-dependent vector field’, that is a vector field on the
‘extended’ tangent bundle R x T M. The tangent field to any curve on M is a curve
on T M, the natural lift of the curve. The graph of this curve in TM is a curve on
R x TM. A second-order non-autonomous differential equation field F is a vector
field on R x T M having the property that its integral curves are the graphs of the
natural lifts of their projections to A{. If coordinates {x"°} a = 1,...,n for M
induce natural coordinates {x“,y*} for T M then F is given by

S . O . O
F=a+F3y“+y@ (5

where the components F° are arbitrary functions on R x T'M. The projections of
integral curves of F' from R x TM to MM satisfy the equations (1). A vector field W
on I x TM generates a symmetry of the equations if it commutes with F. In this
case F' is invariant under the flows of W, and the flows map any integral curve of
F to another integral curve, and hence map one solution of the system of equations
to another. If X generates a symmelry then in local coordinates we must have

X=al s x:-0 4 (rxn2
Jy?

at dxe

where o is a constant of the motion, that is Fo = 0. Given such a symmetry
generator X we can construct another, W, by W = X — oF. The symmetry
generated by W preserves the fibres of £ x T M above R. In local coordinates

O pirwn L ©)

W = Wwe
g dye

where the functions W satisfy
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which is Hojman’s equation (4).
Suppose that we had a system of coordinates in which the condition (2) was
satisfied. Then we could put a trivial connection on I x TM by declaring these
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coordinate vectors to be parallel. Then (2) says that F is divergenceless with respect
to this connection. Hojman’s conserved quantity I, given by

SWwae
dze

I= +——(?--(FW“)
Jye

is then the divergence of the symmetry generator W with respect to this trivial
connection. This suggests that we should replace the coordinate-dependent condition
(2) by the requirement that F be divergenceless with respect to some connection on
I x TM. The geometrical statement of Hojman’s result will follow directly from the
foliowing proposition.

Proposition 1. If X and Y are vector fields on a manifold with connection then
XdivY — YdivX =div[X, Y]+ (divT)(X,Y) - ARic(X,Y). (8

The divergence of a vector field ¥ is defined by divy = e* (Vx_ Y} where the
basis {e*} is dual to the arbitrary basis {X',}. The torsion tensor of V is T, whose
divergence is defined by (divI)(X.Y) = Vy T(X,Y,e*). The Ricci tensor is
related to the curvature tensor R of ¥V by Ric(X,Y) = R(X,, X,Y,e*), with the
anti-symmetric part defined by ARic(.X,Y") = Ric(X,Y) — Ric(Y, X ). Although a
little tedious, the proof of the proposition is straightforward.

We could use the first Bianchi identity to rewrite the tensor divl” — ARic, but in
general this does not lead to anything simple. In the special case of zero torsion we
have ARic(X,Y) = —R(X,Y,X_,¢%). This will of course be zero for a metric-
compatible connection.

Theorem. Let F be a second-order differential equation field that is divergenceless
with respect to some connection on R x T M that satisfies divT’ = ARic. Then for
any vector field W such that [W, F] = f,, F, for some function f, a constant of
the motion is given by Iy, = diviV + fi,r.

If the torsion and Ricci tensors are refated as assumed then Proposition 1 gives
WdivF — FdiviW = div[W, F].

So if [W, F] = fu F we have

and
WAivF — fipdivF — F(diVW + f,,) = 0.

The assumption that divF = 0 then gives F(divWW + f,,) = 0. that is diviA/ + £,
is a constant of the motion.

For the special case of a trivial connection and W generating a symmetry this
reduces to the initial statement of Hojman’s theorem. Note however that we do not
quite require that W generate a symmetry. It is only necessary that the flows of W
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scale the differential equation field F' by an arbitrary function. The set of vector
fields generating these generalized symmetries is a Lie algebra with

fow,x) = Wix—Xfw-

We can always add a multiple of F to W to obtain another generalized symmetry
W + hF with fi, ,p = fwr — Fh. In this way we can obtain a true symmetry if
we can integrate to find a function h such that fy, = Fh. It is easy to see that
Iy 4o nr = Iy, and so we do not change the constant of the motion in this way.

Initially it might appear that the theorem stated here does not accommodate the
generalized statement of Hojman’s theorem which can be phrased as follows. If the
differential equation field satisfies divF = — Fln A, where the divergence is with
respect to a trivial connection and X is the lift of some arbitrary function on A,
then a constant of the motion is given by 7 = (1/A)div(AW) where W generates
a symmetry. In fact this assumption about F implies that F is divergenceless with
respect to some connection. We will see this from the following,

Proposition 2. 1f V is a connection on an m-dimensional manifold then for any
smooth function f a connection ¥ is given by Vv}’ =V Y+ XY +YFX.
The divergence of an arbitrary vector field ¥ with respect to this new connection is
related to that with respect to the old by divy = divY + {(m+1DYS.

Since X fY 4+ Y fX is linear (over the functions) in both X and Y then v is
indeed a connection. We have

vy =e* (T Y)=e® (Vi Y+ X, FY + YFX,)=divY + Y+ mYf.
Xa Xa a

The above proposition 2 lets us recognize Hojman’s weaker assumption as saying
that F is divergenceless with respect to some connection, related to the trivial one
by the function A. However, to be able to apply the theorem stated here we need to
check that the torsion and Ricci tensors of this new connection satisfy the appropriate
condition. The following proposition is more general than we actually need for this

purpose.

Proposition 3. If a connection ¥ is related to another connection V and a _s/n__lgoth
function f by VY = V¥ 4+ Xf¥Y + Y fX then T = T and divT - ARic =
divl — ARic.

Since NfY+ Y fX is symmetnc in X and Y the torsion tensors of the two

connections are the same. Although T = T the divergence with respect to T, divT,
will not be the same as div7. In fact we have

(AVI)(X,Y) = (dvT)( X, Y) + mT(X, Y) f+ X fT(Y, X, %)
“YST(X,X,,e*) + T(Y,X)f.

The Ricci tensor of ¥ is related to that of V by

RIG(X,Y) = Ric(X, ¥) —(m - D H, (Y. X) +(m-DY X[+ YV FT(X,. X.e)
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where H, is the Hessian of f (its second covariant derivative). Taking the anti-
symmetric part gives

ARIC(X,Y) = ARic(X,Y) + Y fT(X,, X, e*) - X fT(X,.Y,e%)
+(m-1DT(X,Y)f.

So the difference between the anti-symmetrized Ricci tensors is indeed the same as
that between the divergences of the torsion tensor.

We can now see how Hojman’s weakened statement is accommodated in the
theorem stated here. Suppose that the differential equation satisfies divF = —Fln A
where A is an arbitrary function and the connection satisfies divZ” = ARic. Then if
V is defined as in proposition 2, with the function f chosen by f = InA/(m +1)
with m the dimension of the extended ed tangent bundle, we have dwF 0. Moreover,

proposition 3 ensures that divT = ARic. So from our theorem divi¥ is a constant
9£ the motion for W any (generalized) symmetry. Using proposition 2 we have
diviW = (1/2)div(AW), and we recover Hojman's expression for the conserved
quantity. (Note that there is no need to restrict A to be a lift of a function on M.)

We have seen that Hojman’s constraint implies that the differential equation field
is divergenceless, are these conditions just the same? For F as in (3) we have in
general

8 L BFY . 3 D
d1VF*d1V5?+5F+Fdiva_ya+y leaF

and so requiring F to be divergenceless is just Hojman's condition on F if
dive/8z = 8f/8z for some function f for z any of the coordinate functions,
for then divF = 8F /9y* + F f. This will be the case if the connection is torsion-
free and metric-compatible. In that case we have div8/dz = 8/dzlno where
o = |detg;;|/2. For a general connection the condition that F be divergenceless
will not reduce to Hojman’s condition. In fact a connection on T A{ with torsion
naturally arises from any connection on M. This connection, called the horizontal
lift, is described in (3].

For a (non-degenerate) Lagrangian system all the constants of the motion are
related to Cartan symmetries (see for example [3]) and so Hojman’s theorem cannot
possibly lead to anything new. In fact, as we will show, it is not even very useful in
that the constants of the motion associated with Noether symmetries are identically
zero. We consider a Lagrangian of the form L = T — V o m where T is the kinetic
energy and V' o 7 is a potential energy function lifted to T M from a function V on
M. In local coordinates T = jg,,y°y* where g,, are the components of the metric
tensor on M in some coordinates. Since we are considering an autonomous system
of equations the Euler-Lagrange field will be a vector field on T M, the projection
of a ‘time-dependent’ differential equation field on R x T'Af. The metric tensor on
M lets us construct a metric and corresponding connection on TA. We can use
the (pseudo-) Riemannian connection on M to define horizontal lifts to TM. Let
{H_} be the horizontal lifts of the basis vectors {8, } with {V/ } the vertical lifts, In
coordinates

& 4 . 0 ;.
a _.L.a_yrab ay* a"aya

)
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where I' ,,© are the connection coefficients of ¥ in the {8,} basis. Let the natural
dual basis be {8, ¢}, with 8°(H,) = 6, 82(V;) = 0 etc. Then a non-degenerate
metric on T M is given by

G =9,0"Q8" +9,9" ©¢". (10)

This metric tensor, and the associated comnection, is described by Yano and
Ishikiara [4], and is sometimes called the Sasaki metric [5]. Let V be the unique
torsion-free G-compatible connection. Then one obtains the following:

VHQ Hh = Fabch - %Rabcpyc‘/p VHG Vb = -%Rq

aps¥P Hy + 107V,

(11)
VVngz-%quwyqu VyV,=0

where R, ¢ arc the components of the curvature tensor of V in the {8,} basis.
Note that if M is just R™ with the trivial connection then the Sasaki connection
is trivial, with the horizontal and vertical lifts of Cartesian coordinate vectors being
parallel.

The Euler-Lagrange field F for the kinetic-plus-potential-energy Lagrangian is
simply expressed in terms of vertical and horizontal lifts as

av
=yH, -g* v
F=y"H, -g 5ot Ve (12)

It is now straightforward 10 check that F is divergenceless with the Sasaki connection.
So for this important class of differential equations the conditions of the theorem are
met. Suppose that K is a Killing vector on M that also leaves the potential V'
invariant. Then the complete lift A" of K to TM generates a (Noether) symmetry.
In coordinates

= a O ,OK¢ &
K=K + vy b By

1
azxe (13)
However, if Div is the divergence operator of the Sasaki connection then the
connection formulae {11) show that the divergence of a complete lift is related to the
divergence on M by

Divik = 2divk (14)

where div is the divergence operator on M. If K is a Killing vector field on M then
divii = 0 and so the constant of the motion obtained from the theorem is zero.

In the introduction it was noted that Hojman’s result was not in fact new. A paper
by Cantrijn and Sarlet [2] contains the ‘generalized statement’ of Hojman’s result.
Moreover they only require their symmetry generator W to satisfy (W, F] = fy F,
rather than commuting with the differential equation F, as required by Hojman.
In fact they claim to be extending the work of Lutzky [6], who gave the result for
Lagrangian systems and noted that the constant was zero for Noether symmetries.
A little later Crampin [7] gave a geometrical statement of the results presented by
Cantriin and Sarlet, noting that the condition imposed on the differential equation
could be understood as saying that it was divergenceless. However, his definition of
the divergence of a vector field was in terms of the Lie derivative of a globally defined
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volume-form rather than, as here, in terms of some connection. He noted that for
a Lagrangian system a volume-form may be constructed from the Cartan 1-form,
and that this volume-form is invariant under the flows of the Euler-Lagrange field.
Therefore if the divergence is defined with this volume-form the Euler-Lagrange field
will be divergenceless. He went on to show that the conserved quantities of Cantrijn
and Sarlet corresponding to Noether symmetries are zero.

The cycle of papers [6,2,7] has an interesting precursor. Gonzalez-Gascon {8]
considered a system of first-order differential equations #* = X*(z*) and showed
how to construct a constant of the motion from any symmetry (in the more general
sense of scaling the differential equation field) providing the ‘divergence’ condition
in which 8X¥/8x* = constant is satisfied. Apparently this result had already been
given for the case of a Hamiltonian system [9]. Gonzalez-Gascon went on [10] to give
a geometrical statement of his result, giving a global statement of the ‘divergence’
condition by defining the divergence in terms of some orienting volume-form. This
was further discussed in [11]. Although Gonzilez-Gascon was considering first-order
systems, rather than second-order ones, his method is the same as used by Crampin.

Both Gonzilez-Gascén and Crampin take the divergence of a vector field to be
defined via some orienting volume-form. I have taken the divergence to be defined
by a lincar connection. The exact relation between these approaches is given by the
following.

Proposition 4. If the divergence is defined with a connection V then the following
are equivalent:

(i) XdivY — YdivX = div[X, Y]

(i) divT = ARic

(iii) On each contractible open set U_ there is an n-form w, such that
Lyw, = divXw,, where Ly denotes the Lie derivative, On the intersection U, NU 4
the n-form w, is a constant multiple of wg.

Proposition 1 asserts the equivalence of (i) and (if). Suppose that (iii) is true.
Then by Lie-differentiating this relation, using the identity [Cy,Ly] = Lry v we
arrive at (i). Conversely suppose that (i), and hence (ii), holds. For any point jp we
may pick some local n-form =z defined in the neighbourhood U, of p. To each vector
field X we associate a function A{\") as follows;

Lyxz-divXz= A(X)z. (15)
The properties of the covariant and Lie derivatives show that the function A(X)
depends linearly, over the functions, on X. Therefore the function A(X) is the
contraction of a 1-form A on the vector field X. Taking the derivative of (15) with
Ly produces

LyLyz—YdivXz =Y (A(X))z + (divX + A(X))(divY + A(Y))=.

If we antisymmetrize in X and Y, noting that the commutator of the Lie derivatives
is the derivative of the commutator, we get

div[Y, X] — (YdivX ~ XdivY') = Y A(X) - XA(Y) — A([Y, X]) = 2dA(Y, X},
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So if (i) holds the 1-form A is closed. By the Poincaré lemma it is therefore exact
on any contractible neighbourhood. If on U, we have A = df, then

Lyz=divXz:4+ X[,z
and so

Ly (exp(—f,)z) = divX{exp(—F, )z} -

Thus (i) implies (iii).

Notice that even on an orientable manifold (i) does not imply that there is a
global volume-form w such that £ yw = div.Xw. If the 1-form A in (15) is not exact
then no such global n-form can exist. As a simple example consider the punctured
plane. Here the 1-form A given in local polar coordinates (. ) by A = d# is closed
but not exact. If V is the standard R* connection then we may introduce another
connection V by

VYV =V, Y+ AY)X.

The divergence operators are related by divX = divX +2A(X). If w is the standard
volume-form then £yw = divXw and so Lyw = (divX - 24(X))w. On any
contractible region U, we may multiply w by the exponential of a local ‘angle’ 6, to
form a local form w, = exp(28, )w such that £ yw, = divXw,. As we go around
the circle these local forms differ by a constant multiple on overlaps. Although this
manifold is orientable there is no global volume-form = such that £, z = divX z, but
we do have XdivYy — YdivX = div[X,Y).

The unquestionable importance of constants of the motion for systems of
differential equations means that any prescription for constructing such constants
is worthy of careful scrutiny. In this paper we have given a coordinate-invariant
statement of the theorem recently presented by Hojman. Such a statement is not
only to be preferred to accommodate non-trivial configuration spaces but is also
more general. For a torsion-free metric-compatible connection the divergenceless
condition is exactly Hojman’s ‘weaker’ constraint. Also we only need a ‘generalized’
symmetry that scales the differential equation field rather than leaving it invariant.
It transpires that Hojman’s results are not in fact new, having already been given by
Cantrijn and Sarlet. In turn their results could perhaps have been anticipated from
the work on first-order systems by Gonzdlez-Gastén. Many of the points that we
have made here in relation to Hojman’s paper were made by Crampin in relation
to that of Cantrijn and Sariet. Uniike Crampin our definition of the divergence
operator is based on some connection rather than a global volume-form. This allows
a slightly more general statement of the result. However, certainly for the case of
Lagrangian systems the Cartan 1-form does lead naturally to a divergence operator
defined directly in terms of a volume-form.

To use the result it is not only necessary to find a symmetry generator but
also to find some connection leaving the differential equation field divergenceless.
Unfortunately in the simplest of cases this result is useless in that for Noether
symmetries the ‘new’ constant is zero. That is not to say that there could not be
other symmetries leading to non-zero constants (Hojman gives an example) but in
general finding symmetry generators is akin to solving the original equations! Another
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possibility might be that there are other less obvious connections with respect to which
the differential equations are divergenceless and for which the Noether symmetries
lead to non-zero constants.

It remains to be seen if, say for non-Lagrangian systems, this result will actually

be useful in finding new constants of the motion.
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